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Summary

1. Distance sampling is widely used to estimate the abundance or density of wildlife 

populations. Methods to estimate wildlife mortality rates have developed largely 

independently from distance sampling, despite the conceptual similarities between 

estimation of cumulative mortality and the population density of living animals. 

Conventional distance sampling analyses rely on the assumption that animals are 

distributed uniformly with respect to transects and thus require randomized placement 

of transects during survey design. Because mortality events are rare, however, it is often 

not possible to obtain precise estimates in this way without infeasible levels of effort. A 

great deal of wildlife data, including mortality data, is available via road-based surveys. 

Interpreting these data in a distance sampling framework requires accounting for the 

non-uniformity sampling. Additionally, analyses of opportunistic mortality data must 

account for the decline in carcass detectability through time. We develop several 

extensions to distance sampling theory to address these problems.

2. We build mortality estimators in a hierarchical framework that integrates animal 

movement data, surveillance effort data, and motion-sensor camera trap data, 

respectively, to relax the uniformity assumption, account for spatiotemporal variation in 

surveillance effort, and explicitly model carcass detection and disappearance as 

competing ongoing processes. 

3. Analysis of simulated data showed that our estimators were unbiased and that their 

confidence intervals had good coverage.
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4. We also illustrate our approach on opportunistic carcass surveillance data acquired in 

2010 during an anthrax outbreak in the plains zebra of Etosha National Park, Namibia.

5. The methods developed here will allow researchers and managers to infer mortality 

rates from opportunistic surveillance data.

KEY WORDS: Carcass; Cue; Disease; Distance sampling; Hierarchical model; Mortality; 
Opportunistic surveillance.
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Introduction

Distance sampling is a common class of methods used to estimate abundance of wildlife 

populations (Buckland, Goudie & Borchers 2000). In conventional distance sampling (CDS), a 

region is sampled from randomly placed lines (line transect sampling) or points (point transect 

sampling) with � detected animals counted and their respective distances, �� , � = 1, … �, to the 

traversed line or point recorded. The distribution of these distances is then used to estimate 

the decline in an animal’s detection probability as a function of increasing distance from the 

observer. The fitted detection function then facilitates estimation of animal abundance or 

density in the surveyed region, and the precision thereof (Buckland et al. 2001).

One of the strengths of CDS is that random placement of transects in the study area 

(i.e., design-based surveys) supports two assumptions. First, the surveyed area is assumed to be 

a random (i.e., unbiased) sample of the larger study area (between-transect scale), allowing 

extrapolation of density estimates from the former to the latter. Second, the perpendicular 

distance of animal locations to the survey transects is assumed to be uniform (within-transect 

scale). We use �(�) to denote the probability density distribution of an independent and 

identically distributed random variable � and �(��) to denote the probability density at a 

particular distance ��. If �(�) is uniform, then any drop-off in the expected number of animals 

detected at greater distances is due to declining detectability, rather than changes in animal 

density. 

Both assumptions above may not hold for distance sampling-type data collected from 

non-randomly located transects or paths. Violations of the assumption that the surveyed area is 
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not a random sample of the study area can be accounted for by modeling population density as 

a spatially explicit function of habitat covariates (Hedley & Buckland 2004; Williams, Hedley & 

Hammond 2006; Johnson, Laake & Ver Hoef 2010). Without transect randomization, however,

accounting for bias caused by violations of the assumption that �(�) is uniform can pose a 

challenge (Johnson, Laake & Ver Hoef 2010; Marques et al. 2010). Violation of the uniformity 

assumption will commonly occur in surveys conducted from easily navigable permanent paths 

that either indirectly (e.g., via association with habitat variables) or directly (e.g., road 

avoidance) affect animal behavior. Without knowing how a species’ utilization varies with 

distance from transects, results will be biased (Johnson, Laake & Ver Hoef 2010); though see 

Marques et al. (2010) for an alternative approach to disentangling detectability from �(�). 

Therefore, from an analytical point of view, most CDS literature holds that randomization of 

transect location is indeed necessary (Buckland et al. 2001; Buckland 2004).

Opportunistic surveys—i.e., those in which detections are recorded while observers are 

performing other tasks—have some important advantages over design-based surveys, 

suggesting a need for methods that can account for the bias associated with non-uniform �(�). 

These advantages include: (1) the relatively low-cost of acquiring distance data from paths 

already being traversed for other reasons (Williams, Hedley & Hammond 2006; Kiszka et al.

2007) or from easily navigable paths (Walsh & White 1999); (2) the relative ease of collecting 

opportunistic data long-term (Kiszka et al. 2007; Himes Boor & Small 2012); and (3) avoidance 

of the problem that, when studying extremely rare or elusive animals, resource limitations may 

prevent feasibly sized design-based studies from detecting enough animals for informative 

inference.
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Opportunistic surveys may also be preferable when counting rare events, such as 

sighting rare or elusive animals, or finding carcasses of even common animals.  In the latter 

case, carcasses may be detectable for such short durations that an unfeasibly large design-

based survey would be necessary to detect enough carcasses for adequate precision. Yet 

opportunistically sighted carcasses are often recorded in long-term data sets, often along with 

cause of death, thereby enhancing our understanding of a species’ mortality dynamics. In this 

manuscript, we extend CDS through the development of new methods to incorporate estimates 

of non-uniform �(�) from auxiliary Global Positioning System (GPS) movement data in distance 

sampling estimators. In addition we also extend CDS to incorporate data on rates at which 

scavengers dispose of carcasses into estimates of mortality rates. If carcasses are quickly 

removed from the environment (i.e., by decay or consumption), a smaller proportion of 

carcasses will be detected.  Consequently, researchers have paid much attention to carcass 

removal rates when estimating of wildlife mortality due to wind farms (Smallwood et al. 2010), 

roads (Santos, Carvalho & Mira 2011), pesticides (Rivera-Milán, Zaccagnini & Canavelli 2009), 

and power lines (Ponce et al. 2010). Using the “multiplier” approach (Buckland 2001; Buckland 

2004), one can then estimate the mortality rate by dividing the estimated carcass abundance 

(from distance sampling analysis) by the estimated duration for which a carcass is detectable 

(equivalent to multiplying by the estimated removal rate), taking care to incorporate variance 

due to the latter in the former (Plumptre 2000).

The above “multiplier” method, however, is invalid when carcasses have multiple 

chances to be detected but can only be detected once—i.e., during opportunistic surveillance 

when multiple trips may be made past a carcass, but communication among researchers
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ensures no double sampling. In such situations detections are conditional on previous non-

detection. The probability of detecting a carcass on one of several trips is a function of the 

probability the carcass was available for detection at each trip (and hence on the removal rate), 

making the detection probability of each carcass a nonlinear function of the number of trips 

past that carcass, the interval between trips, and the removal rate. Thus our second extension 

to CDS is the explicit inclusion of detection and removal as competing processes within distance 

sampling estimators.

Finally, in some systems “removal rates,” which implicitly assume carcass removal to be 

a discrete event, may not be the relevant concept. For instance, detection of large terrestrial 

mammal carcasses often occurs either by detection of the carcass itself or via detection of 

various scavenger species, each of which may be more or less detectable depending on size and 

capability for flight (e.g. large numbers of vultures in flight can be seen at great distances). 

Thus, carcass availability for detection depends on the probability of scavenger (i.e., sighting 

cue) presence as a function of time since carcass production (i.e. death of an individual). These 

probabilities will differ between scavenger species based on their abundance, search efficiency,

and niche partitioning (Hunter, Durant & Caro 2007). Hence, rather than modeling a “removal” 

process, we model the sighting cue process itself. Specifically, we estimate �(�|�): the 

probability each sighting cue, �, is available as a function of time since death, �, from motion-

sensor camera trap data on scavenger activity at carcasses.

In summary, we address several gaps in methods used to estimate cumulative mortality 

incidence from opportunistic surveillance data. As an example of the methods developed in this 

paper we estimate cumulative mortality during outbreaks of seasonally endemic anthrax in the 
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plains zebra (Equus quagga) of Etosha National Park (ENP), Namibia. Using a hierarchical 

modeling framework (Royle & Dorazio 2008), we model carcass production, sighting cue 

availability, and detection as concurrent dynamic processes. Our analysis explicitly accounts for 

surveillance effort by estimating mortality rates within surveilled space-time windows. We use 

bootstrap methods to incorporate error associated with estimation of �(�) and �(�|�) into the 

final incidence estimate. We first present a technical section extending distance sampling 

methods, as motivated above. We then introduce the ENP study system, focusing on the 

observational and ecological processes that play a role in producing the passive surveillance 

data to be analyzed. We continue by using simulated carcass data to assess the accuracy and 

precision of the developed estimator, before applying it to estimate cumulative mortality in the 

surveilled region during an anthrax outbreak in ENP in 2010. Finally, we conclude with a 

discussion of the utility of these methods as well as suggest future directions.

Materials and Methods

A general likelihood for carcasses

Following the notation in Buckland et al. (2001), in CDS the abundance of � animals within half-

strip width � of surveyed transects is estimated by the Horvitz-Thompson estimator �� =
�

∫  �
� �(�|��)�(�) ��, where � is th number of detected animals, �(�|θ) is the probability of detecting 

an animal given with a perpendicular distance y from the transect, and � is the parameter set 

for this function. To allow robust estimation of �, the detection function �(�) must have a 
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shoulder at the transect (�′(0) = 0) and detection must be perfect on the centerline (�(0) =

1). Throughout the remainder of the paper we focus on a common such model with these 

properties, the half-normal detection function �(�|θ) = exp �− ��
��

�
� .

The denominator of �� is the marginal probability of detecting any animal within a 

distance w of the transect. We do not know �(�|θ) but rather estimate θ� by maximizing the 

likelihood of the distribution of detected distances �� given detection: i.e.

�(θ|�) = ∏  �
���

�(��|�)�(��) 
∫  �

� �(�|�)�(�) ��. (1)

Consider an opportunistic surveillance data set in which carcass observations were 

recorded for � = 1, … , � carcasses that were generated on day �� at distance �� from road ��

and sighted with sighting cue ��. In some systems, there may be only one type of sighting cue—

i.e. the carcass itself—but in some systems, such as our motivating example below, there may 

exist a set of cues with very different detectability-distance drop-offs and durations of time 

available for detection (e.g., avian scavengers, mammalian scavengers, or the carcass itself). In 

these cases, the likelihood (Eq. 1) can be extended with the probability that carcass � was 

generated on day �� at distance �� from road �� with cue ��, given that the carcass was 

detected. The likelihood for all carcasses found is the product of individual likelihoods of each 

carcass and thus be written as 

��(�|�, �, �, �) = ∏  �
���

�(��,��,��,��|�)�(��,��,��,��)
∑  (�,�)∈(�,�) ∫  �

� ∑  �∈� �(�,�,�,�|�)�(�,�,�,�)�� (2)

where (�, �) is the spatiotemporal window being considered, � is the set of all detection cues, 

and �(�, �, �, �) is the joint probability density function of a carcass being generated � distance 

from the road on day �, road �, and being observed with cue �. We assume that, �, and � are 
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independent though � and � are likely correlated because particular roads may have elevated 

carcass densities at certain times as a result of correlated movements of individuals. Thus, we 

assume that �(�, �, �, �) = �(�)�(�)�(�, �). While we do not actually know the day of death 

��, but only the day of detection ��, for many surveillance systems (i.e., because aging carcasses 

is difficult) we assume that the former is known for now but expand the likelihood with a latent 

variable formulation below. Noting that the denominator of Eq. 2 is the marginal probability of 

finding any carcass in (�, �), we can construct a Horvitz-Thompson estimator of carcass 

abundance in that window. 

���� = �
∑  (�,�)∈(�,�) ∫  �

� ∑  �∈� �(�,�,�,�|��)�(�)�(�)�(�,�) ��                         (3)

In the above formulation �(�, �) explicitly accounts for the spatiotemporal (ST) distribution of 

carcasses. In some ways this formulation is attractive. In theory it allows us to fit �(�, �) and 

thereby estimate not only the abundance of carcasses but also their spatiotemporal 

distribution, given a sufficiently large sample size. However, our initial exploratory simulations 

demonstrated that this formulation has the disadvantage that surveillance effort that has not 

resulted in the detection of carcasses affects the likelihood and subsequently estimation of �. 

When the majority of surveillance effort resulted in zero detections (often the case for carcass 

surveillance), including this effort in the analysis biased �� and subsequently ����. We therefore 

decided to develop an estimator that was conditional on the particular road �� where the 

carcass was found, the date �� it was generated (i.e. date of death), and the distance ��. The 

likelihood is then the conditional probability of �� and �� given detection of a carcass at (��, ��): 

��(�|�, �, �, �) = ∏  �
���

�(��,��,��,��|�)�(��)�(��)
∫  �

� ∑  �∈� �(�,�,��,��|�)�(�)�(�)�� (4)
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The denominator of (3) is no longer the marginal detection probability but rather the 

conditional probability of detecting a carcass given �� and �� and is thus specific to each 

detected carcass. Thus, following Borchers et al. (1996), rather than dividing � by the marginal 

probability of detecting, we formulate a Horvitz-Thompson-like estimator which sums the 

inverse detection probabilities of each carcass detected ��� = ∑  �
���

�
���

 , where �̂� is the average

probability of detecting a carcass on road �� that was detected on day ��. The detection cue 

changes over time so �̂� encompasses the probability of detection with any cue, yielding: 

���� = ∑  �
���

�
∫  �

� ∑  �∈� �(�,�,��,��|�)�(�)�(�)��                         (5)

Our simulations also demonstrated that this estimator also was biased due to integration over 

both y and the latent variable �� when surveillance effort was sparse (Supplementary Table S1). 

We found that a slightly modified Horvitz-Thompson estimator that also was conditional on ��

was approximately unbiased, so we thus use the following estimator throughout the rest of the 

manuscript

��� = ∑  �
���

�
∑  �∈� �(��,�,��,��|��)�(�)                         (6).

The detection function

The numerator of Equation 4 gives the probability a given carcass was detected at �� from the 

road with cue �� given death on road �� on day ��. For a known date of death ��

�(�� , ��, ��, ��)�(��)�(��) = �(��) ∑  �∈� �∗��� , ��, ��, ��, ��,���(��|��,�) (7)
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where ��,� ≡ ��,� − �� is the number of days between death and the �-th trip past the �-th 

carcass and ��,� is the calendar day of this trip. We define �∗(��, ��,��, �� , ��,�) as the probability 

of detection on exactly the �-th trip with cue ��, conditional on previous non-detection. The 

cumulative probability of detection within ���� days (i.e., the maximum number of days after 

death that we believe a carcass is detectable, chosen based on knowledge of the study system) 

of �� is calculated by summing over this function for all trips in ��, where �� is defined such that 

� ∈ �� if ��,� ∈ [0, ����]. The probability of detection exactly ��,� days after death with cue �� is 

the probability of missing the carcass on all trips to road �� after the carcass was generated, but 

prior to the trip of detection multiplied by the probability of detecting it on trip �: i.e.

�∗��� , ��,��, �� , ��,���(��|��,�) = ℎ(�� , ��)�(��|��,�) ∏  �∈��,� (1 − ∑  �∈� ℎ(�� , �)�(�|��)) (8)

where ℎ(�� , ��) is the distance detectability function (equivalent to �(�, �) used in the CDS 

notation above) giving the probability of detecting a carcass displaying sighting cue �� given the 

carcass is �� distance from the road. The product occurs over all trips in ��,�, where ��,� is 

defined such that � ∈ ��,� if �� ∈ [0, ��,�).

The function ℎ(��, ��) is the detection function in the CDS sense in that it is the 

probability of detecting a carcass �� meters from the road given that the carcass is presenting 

sighting cue ��. We use the half-normal detection function with a scale parameter for each cue 

type ℎ(�� , ��) = exp[−( ��
���

)�].

While for simplicity we do not consider covariates other than cue type here, other 

covariates can easily be included in the model using the following modification for � covariates 
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(��, … , ��) thought to influence detection: ℎ(�� , ��) = exp �− ���
��

�
�
� where �� = ��� ×

exp�∑  �
��� ����,�� and �� is the parameter determining the effect of the covariate ��. We 

could imagine increased precision in the estimator if, for example, we included covariates such 

as driver, number of passengers in the car, or habitat type.

Incorporating a latent variable for the date of death

In many systems we rarely know the date of death �� for detected carcasses. Consequently, we 

model �� as a latent variable, whose distribution was informed by the observed sighting cue, 

the probability a given sighting cue is available as a function of time since death, and the recent 

history of surveillance effort. For instance, if a carcass is detected by a cue that is only available 

for three days after death we can be reasonably sure the carcass is less than three days old. 

More formally, we define �(��) as the probability that a carcass is �� days old. We allow �� to 

take integer values in the interval [0,5] and sum over the latent variable ��

�(�� , ��, ��, ��)�(��) = ∑  ��
����������

��(��|��) ∑  �∈� (�(�� , �� , ��, �� , ��,�)�(��|��,�))� (9)

where we define �� ≡ �� − �� as the number of days between death and detection (for each 

potential value of ��). We can express �(�|�) as the probability of detection exactly �� days 

after death with cue �� divided by the marginal probability of detection with cue ��

�(�|��) = �(��,��,��,��,�)�(��|�)
∑  ��

���������� �(��,��,��,��,��)�(��|��)
(10)

Optimization and Interval Estimation
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The conditional probability of detecting a carcass at (��, ��) (the denominator in the conditional 

likelihood given by Eq. 4) requires calculation of an analytically intractable integral. To increase 

computational efficiency, we use a rectangular quadrature approach to discretize this integral. 

Likelihood maximization of Eq. 4 was performed using the R function optim. All scripts needed 

to reproduce this analysis are included in the Online Supplementary Material.

We formulated both parametric and non-parametric bootstrap confidence intervals and 

compared their bias and coverage with simulated data (described below). To build parametric 

bootstrap confidence intervals for the estimated parameters, we invert the Hessian matrix of 

the likelihood to estimate the covariance-variance matrix Σ�. Given the maximum likelihood 

parameter estimate vector �� and Σ�, we draw 10,000 random parameter sets ��� from the 

multivariate normal distribution �(��, Σ�) and calculate ���,� for each ���. Confidence intervals are 

then constructed from the appropriate quantiles of the empirical distribution function of the 

sample ���,�. 

Non-parametric bootstrapping is commonly used to build robust confidence intervals in 

line transect methods. Bootstrapping is usually performed by resampling individual transects in 

a multi-transect survey because transects are generally sufficiently far apart in space or time to 

assume independence. In the situation of ongoing opportunistic surveillance, there are no well-

defined sampling units. Given that no theoretically sound sampling unit was available, for 

simplicity, we choose to bootstrap over detected carcasses and their corresponding history of 

surveillance effort. We maximize the likelihood and calculate ���,� for each of 1,000 bootstrap 

samples and construct 95% confidence intervals as above.
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To maintain simplicity, we estimate �(�) and �(�|�) from auxiliary data sets prior to 

maximizing the likelihood rather than simultaneously estimating these distributions and 

detection function parameters. Thus, these distributions were fixed during estimation of ���,�. 

To assess how error associated with estimating these distributions affected the interval 

estimation for the ENP data set, we also resampled the auxiliary data sets used to estimate 

these distributions during the non-parametric bootstrap resampling above and used the 

resulting ��(�) and ��(�|�) distributions, respectively, when maximizing the likelihood in the j-

th bootstrap run. This approach allows uncertainty to percolate through into the cumulative 

incidence estimates without increasing the computational complexity.

Introduction to the study system

Anthrax is a fatal disease of mammals caused by the bacterium Bacillus anthracis and causes a 

significant burden of mortality in livestock and wild herbivores worldwide (Hugh-Jones & de Vos 

2002). B. anthracis is an environmentally-transmitted pathogen with animals infected after 

being exposed to sufficiently large doses of spores in soil, water or food contaminated by a 

carcass that previously died of infection. In ENP, anthrax is seasonally endemic in plains 

ungulates and elephants with the highest observed mortalities generally occurring in the plains 

zebra and during the end of the wet season (Lindeque & Turnbull 1994). Mortalities are 

generally observed on the central Okaukuejo plains of ENP where large herds of zebra graze 

during the wet season (Fig. 1, Supplementary Movie 1). These plains are near the Okaukuejo 

tourist camp where the Etosha Ecological Institute is located and where most surveillance trips 
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on the park road system begin and end. We thus focus on this central region of ENP. 

Importantly, the habitat across this region is largely open, yielding similar situations for carcass 

detection. B. anthracis is not considered a threat to its hosts in ENP and is not currently 

managed. However, it remains unknown the extent to which the bacterium regulates its host 

population, alters competitive interactions, or subsidies the scavenger population because the 

rate of anthrax-generated mortality remains unknown. Accurate estimates of anthrax-related 

mortality would facilitate better decision-making regarding how (and whether) to manage the 

disease in the future. Unbiased mortality estimates can also facilitate our understanding of the 

causes of transmission patterns, as patterns in passive surveillance data reflects not only the 

transmission process but also the spatiotemporal distribution of surveillance effort.

Non-uniform distribution of perpendicular distances to roads

Roads in ENP often connect waterholes and are built in areas with high game density to 

facilitate tourism and management (Fig. 1). Thus concern that �(�) is not uniform is warranted. 

We assume that the distribution of carcass perpendicular distances to the nearest road is an 

unbiased sample of live animal locations. While large carnivores occasionally move carcasses, 

the distance moved is rarely great enough to affect this assumption in our experience. 

Consequently, we can assume that where animals die is a random sample of their movement 

paths while alive and use movement data from 27 GPS collared animals to estimate �(�). 

Specifically, we measured the distance of all GPS fixes to the nearest road and fit a truncated 

gamma distribution to all points within a maximum strip width of 800m from the road (Fig. 2; 
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strip width chosen as advised in Buckland et al., 2001). 

Temporally variable cues

Carcasses are observed by detecting cues that we group into three types: (1) avian scavengers 

(e.g., vultures, marabou storks, crows, raptors), (2) mammalian scavengers (e.g., jackals, 

hyenas, lions), or (3) the carcass itself. Since detection is intimately linked to these cues, we 

modeled detectability as a function of cue presence, which itself is modeled as a function of 

time since death, as estimated from data collected by motion-sensor camera traps deployed at 

31 fresh zebra carcasses. Presence of each cue type was abstracted from the photographs for 

each 15 minute interval up until ���� = 5 days after death by which time the most detectable 

cue types are no longer available. In the following analysis, we only included carcasses detected 

by avian scavengers, mammalian scavengers, or a fresh carcass (defined as a carcass with the 

majority of muscle and internal organs intact) and excluded the few detected carcasses thought 

to be older than 5 days. Such carcasses are rarely detected far from the road and number too 

few to robustly estimate detectability functions for these cues. The temporal distribution of 

cues over time is displayed in Fig. 3. We modeled detection conditional on the dominant cue, 

where cue dominance was determined by the available cue with the greatest visibility. Thus 

mammalian scavengers were the dominant cue when they were present but avian scavengers 

were absent, and a fresh carcass was the dominant cue only when neither avian nor 

mammalian scavengers were present.
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Opportunistic sampling platform

In ENP passive carcass surveillance, we consider the “survey” to be comprised of opportunistic 

observations of carcasses by researchers while conducting other field work. Surveillance effort 

is thus highly variable across time and space, depending on the number of individuals working 

in the park at any given time. To this end, we divided the Okaukuejo road system (Fig. 1) into 

road segments of length ≤5km and asked researchers to record the roads driven for each trip. 

Consequently, trips are the unit of surveillance effort. Carcasses are only reported once and so 

that detection on any given trip is always conditioned on non-detection on all previous trips 

passing that carcass. Without effort data we cannot distinguish absence of carcasses observed 

from absence of effort. Therefore, only carcasses recorded by individuals reporting surveillance 

effort during road-based passive surveillance were analyzed. The vast majority of carcasses, 

however, were detected by passive road-based surveillance with reported effort. Ignoring other 

carcasses will conservatively bias mortality estimates downwards because carcasses reported 

outside of reported effort may otherwise have been detected during surveillance effort at a 

later trip.

Space-time windows and extrapolation

In CDS, abundance can be obtained from density for a closed study area (such as a demarcated 

habitat) of size �. When estimating the cumulative incidence of events, such as deaths, we are 

interested in restricting estimation to a given space-time volume. We choose to estimate 
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outbreak size during the last four months of the 2010 wet season in ENP (Feb-May; 

Supplementary Movie 1) as well as restrict our attention to this period during simulation. 

Extrapolation from space-time volume inside the surveillance effort (i.e., strips around road-

days with effort in the next 5 days) to space-time volume outside the surveillance effort (i.e., 

areas far from roads, or near roads but at times when there is no effort) must be made with 

caution. The validity of this extrapolation relies on the similarity in host utilization and 

transmission intensity between the surveilled area and the greater space-time window. In this 

analysis, we estimate cumulative incidence in the space-time volume defined by cylinders with 

half-strip widths of 800m around the road system for days when roads were driven in the next 

5 days. Thus, we make the distinction that of the ���� carcasses in the study area, � have 

nonzero detection probabilities, and for now restrict our attention to estimating this quantity. 

Future methodological development for extrapolation outside this space-time window to a 

greater temporal (seasonal) and spatial (area encompassing the population's distribution) scale 

is mentioned in the discussion as potential future work.

Simulation 

To assess the accuracy and precision of ��� , we simulated data based on the actual surveillance 

effort analyzed below. Briefly, we distributed � carcasses within � meters of the Etosha 

National Park roads on days when they were driven in the next 5 days as recorded in our 

surveillance system (i.e., the surveilled space-time volume). In this way all � carcasses had a 

nonzero probability of detection. We conducted simulations with both uniform (Scenarios 1 
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and 2) and gamma distributions for �(�) (Scenarios 3 and 4). Parameters of the latter were 

simulated using the fit from GPS movement data (Fig. 2). For Scenarios 1 and 3, we distributed 

carcasses across roads and days using the discrete uniform distribution �����(�, �) =

������(�)
(#����) ∑  ������(��). To simulate a more realistic spatiotemporally heterogeneous distribution of 

carcasses, for Scenarios 2 and 4 we used ���(�, �) =  ����(�,�)
∑ ����(�,�) where �′��(�, �) =

�����(�, �) × S and S is a random variable defined by �~Γ(1, 0.5). For simulations with gamma 

�(�), we also estimated cumulative mortality assuming �(�) is uniform to assess how this 

assumption might have biased analysis of real data. For each of the six combinations of 

possibilities, we simulated 100 carcass populations, filtered them through the following 

detection process, and then estimated � using the estimator ��� .

Each carcass could be detected on trips to the road where it occurred on the day of 

death and the five following days. For each trip, the available sighting cue was randomly chosen 

using �(�|�) fitted from the camera trap data. The probability of detection given that cue was 

then calculated using the detection functions and detection function parameter values given in 

Table 1 and then a Bernoulli trial determined whether the carcass was detected on that trip or 

not. Bernoulli trials were performed for trips until the carcass was detected or the last trip 

within the 5-day detection window was evaluated and the carcass was determined to have 

been undetected on all trips.

Results

Simulation results
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Estimation of the detection function parameters through maximum likelihood maximization 

performed well and consequently the Horvitz-Thompson-like estimator performed well for all 

four scenarios (Table 1). Parametric bootstrapping confidence intervals enclosed the true 

number of carcasses >95% of the time but yielded rather high upper boundaries in comparison 

to the non-parametric bootstrap confidence intervals which had lower coverage, most likely 

due to the inappropriateness of using carcasses as the bootstrap sampling unit. Thus we 

propose that the parametric bootstrap confidence intervals should be used. The estimator and 

parametric bootstrap confidence intervals proved relatively robust to spatiotemporal 

heterogeneity in carcass incidence density (Scenarios 2 and 4).

Anthrax surveillance analysis 

During Feb-May 2010, individuals recording surveillance effort detected 72 zebra 

carcasses within the 800m half-strip width of Okaukuejo area roads in ENP. The vast 

majority of these carcasses were detected by avian scavengers (Fig. 4). Of these carcasses, 

50 (69%) were confirmed anthrax positive by selective culture of B. anthracis or molecular 

diagnostics. Using the newly constructed estimator, we estimate that within the surveilled 

space-time volume there were 272 (208-592) zebra carcasses in total where the 

parenthetical here and thereafter gives parametric bootstrap confidence intervals (Table 

2). While parametric bootstrapping does not include the error associated with estimation 

of �(�) or �(�|�) because it is based on optimization of a single data set, non-parametric 

bootstrap confidence intervals including error in estimation of these distributions suggests 

that this error was minor compared to error associated with estimation of ��� . Assuming 
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the prevalence of anthrax amongst observed and unobserved carcasses is equal, we 

estimated that 189 (145-411) anthrax-related zebra mortalities occurred in the surveilled 

space-time window—3.8 (2.9-8.2) times greater than the observed number. Given that this 

quantity only estimates mortality within the surveilled space-time volume, it (and the 

associated confidence interval) already serves as a valuable lower bound for the incidence 

of anthrax during this outbreak. The most recent aerial survey estimate of zebra population 

size in ENP was 12,982 in 2005 (95% confidence interval: 10,937 – 15,027)(Kilian 2011). 

Discussion

While CDS provides a solid framework for developing surveys of reasonably 

abundant and visible animals, opportunistic data may be preferable for estimating the 

abundance of elusive animals or short-lived carcasses. Though opportunistic data are 

readily available, they are often underused or misused due to biases inherent in the lack of 

transect randomization (Hedley & Buckland 2004; Kiszka et al. 2007) or a poor 

understanding of how carcass removal and detection are competing processes (Smallwood

et al. 2010). Mark-recapture distance sampling (MCDS) may be appropriate for treating 

distance data from multiple observers in an actively designed survey (Buckland, Laake & 

Borchers 2010). However, in opportunistic surveillance when each observer may have 

multiple chances to observe a carcass and communication between observers ensures each 

carcass is only recorded once, even the weakest independence assumptions of MCDS are 

violated. In contrast, temporally explicit modeling of sighting cue distributions allows 

carcass removal to be treated as a dynamic process operating on the same time scale as the 
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survey. With a temporal model, the integration of auxiliary data on surveillance effort, 

sighting cue variation over time and animal movement, we were able to create robust point 

and interval estimators of cumulative mortality in a distance sampling framework. The 

general likelihood approach provided here could be used to estimate cumulative mortality 

in a wide variety of applications, including opportunistic surveillance of mortality due to 

disease, wind farms, pesticides, and road kills (though distance sampling from the road 

may not be applicable for the latter, our approach to modeling removal processes remains 

applicable). We feel that where long-term opportunistic data sets already exist, acquiring 

such auxiliary data (if not already available) will still often be cheaper than active CDS

surveys. 

To estimate abundance in this framework we made several assumptions. First, only 

carcasses detected by individuals recording surveillance effort were included in the 

analysis. Because carcasses are only detected once (after the first sighting of a carcass,

communication among vehicles allows all teams to know its location), carcasses detected 

outside surveillance effort were therefore “censored” from the data set, biasing cumulative 

mortality estimates downwards. Second, we assumed that detection functions are not 

variable across the study area based on the relative homogeneity and openness of the 

Okaukuejo plains, on which the zebra spend the majority of their wet season. Finally, we 

estimated �(�) using only a limited number of GPS collared animals. We accounted for the 

sample size directly by including the error in �(�) estimation directly via bootstrapping. 

However, the choice of functional form for �(�) was ad hoc. The empirical distribution 

from the GPS data could have been used itself, though this may be more sensitive to 

individual animal heterogeneity. We also assumed the distribution was spatiotemporally 



24

homogenous due to the lack of sufficient data to understand whether the way animals act 

around the road varies in space or time. If animals indeed die closer to the roads than 

expected from the GPS movement data, then our estimator would be upwards-biased. The 

goal of this paper is to present methods for using auxiliary data in distance sampling 

analyses of opportunistic data. We caution readers that when applying these methods, they 

should carefully examine the assumptions regarding the relationship between the available 

data sets and the true distributions �(�) and �(�|�).

The most obvious extension of these methods in future work is to allow for 

extrapolation to the entire space-time volume of interest (i.e., the study area over an entire 

season or year). This could be done by modeling overlap between the surveilled space-time 

volume and the live host animal spatiotemporal distribution, with the latter estimated 

using movement or other live population survey data. The spatiotemporally explicit 

formulation of the estimator proposed in this manuscript was biased because the vast 

majority of surveillance effort did not result in carcass detection, but nonetheless affected 

the estimation detection function parameters when maximizing Eq. 2. Nevertheless, we 

suggest that future work should incorporate the conditional formulation’s (Eq. 4) results 

into a Generalized Additive Modeling framework to make spatiotemporally explicit 

estimates of mortality incidence density (Hedley & Buckland 2004; de Segura et al. 2007).
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Table 1

Mean of 100 detection function parameters, carcass abundance estimates (���), Confidence 

intervals and their coverages are given for each of the four simulation scenarios. Standard 

errors are given in parentheses.

  true val. Scenario 1 Scenario 2 Scenario 3 Scenario 4
� - 65 (1) 66 (1) 77 (1) 75 (1)

��� 300 302 (9) 296 (8) 313 (8) 308 (9)
bias - 2.2 -3.6 13 7.6

mean sq. er. - 7494 6628 7542 7676
CI 95a - 204 (4) - 724 (53) 203 (4) - 680 (41) 221 (4) - 804 (93) 219 (4) - 671 (47)
CI 95b - 212 (4) - 497 (30) 206 (4) - 482 (26) 227 (3) - 500 (35) 220 (4) - 474 (24)

CI coveragea - 0.97 0.94 0.97 0.94
CI coverageb - 0.84 0.81 0.85 0.89

������ 0.40 0.4 (0.0043) 0.39 (0.004) 0.39 (0.0045) 0.39 (0.0043)
����� 0.12 0.14 (0.0035) 0.14 (0.0032) 0.14 (0.0031) 0.14 (0.0038)
�������� 0.10 0.098 (0.0016) 0.098 (0.0019) 0.099 (0.0016) 0.097 (0.0017)

aConfidence intervals constructed using the parametric bootstrap with the information matrix 

estimate of the covariance matrix and the delta method.

bConfidence intervals constructed using the non-parametric bootstrap approach.
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Table 2

Estimates of cumulative mortality in the plains zebra of Etosha National Park 

in the surveilled region during the 2010 anthrax outbreak.

Uniform �(�) gamma �(�)
� 72 72

��� 366 272
CIa (252, 856) (208, 592)
CIb (256, 601) (202, 381)
CIb - (200, 393)
CId (242, 590) (188, 404)
CIe - (194, 412)

������ 0.517 0.624
����� 0.108 0.109
�������� 0.090 0.090

a95% Parametric bootstrap confidence intervals.

b95% Non-parametric bootstrap confidence intervals.

c95% Non-parametric bootstrap confidence intervals with resampling over both observed 

carcasses (as in footnoteb) and also the GPS collared zebras used to fit a gamma distribution for 

�(�).

c95% Non-parametric bootstrap confidence intervals with resampling over both observed 

carcasses (as in footnoteb) and camera traps used to estimate �(�|�).

e95% Confidence intervals constructed using the non-parametric bootstrap approach with 

resampling over observed carcasses, �(�) and �(�|�) (as in footnotesb,c,d).
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Figure 1. Map of the central region of ENP showing plains zebra carcasses (squares) detected by 

passive surveillance in Feb-May 2010. Road (gray lines) width scales with the square root of the 

number of trips made on that road during the study period.
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Figure 2. Distribution of perpendicular distance from road from 52,745 GPS fixes collected from 

27 collared plains zebra in the Okaukuejo region of Etosha National Park during the late wet 

season (Feb-May). The black line shows the fitted truncated gamma distribution used as �(�)

to fit the detectability functions. Data are only showed up to the maximum strip width of 800m 

for which the distance sampling analysis is conducted.
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Figure 3. Proportion of time a sighting cue is the dominant cue at a carcass as a function of day 

since death as estimated from camera traps placed at fresh zebra carcasses.
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Figure 4. Distribution of perpendicular distances between sighted carcasses and roads for zebra 

carcasses detected during passive surveillance in Feb-May 2010 by sighting cue type. Maximum 

likelihood fitted detectability functions, as estimated with the estimated distribution of �(�)

modeled as a truncated gamma distribution from GPS movement data from live zebra (Fig. 2),

are displayed as a black line, with lines normalized so that the area under the curve matches 

the area of the histogram bars. 
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Supplementary Movie S1.  The top panel shows daily surveillance effort by showing the 

roads driven each day as purple lines, where line thickness scales with the square root of 

the number of trips driven on that road. Squares represent zebra (Equus quagga) carcasses 

with red, blue, and black representing confirmed positive, negative, and unknown for 

Bacillus anthracis (the causal bacterial agent of anthrax). Dots display the GPS movement 

fixes (at 20 minute intervals) of GPS collared live zebra. Each color represents a different 

animal. The bottom panel shows the cumulative driving effort and carcasses.
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